翻訳と辞書
Words near each other
・ Rifa and Southern Region, Bahrain
・ Rifa'a al-Tahtawi
・ Rifa'i
・ Rifaat al-Assad
・ Rifaat Eid
・ Rifaat El-Fanagily
・ Rifaat el-Mahgoub
・ Rifaat Garrana
・ Rifaat Hussain
・ Rifaat Turk
・ Rifabutin
・ Rifaina
・ Rifalazil
・ Rifampicin
・ Riesz mean
Riesz potential
・ Riesz rearrangement inequality
・ Riesz representation theorem
・ Riesz sequence
・ Riesz space
・ Riesz theorem
・ Riesz transform
・ Riesz's lemma
・ Riesz–Fischer theorem
・ Riesz–Markov–Kakutani representation theorem
・ Riesz–Thorin theorem
・ Riet
・ Riet River
・ Riet River (Doring)
・ Riet, Germany


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Riesz potential : ウィキペディア英語版
Riesz potential
In mathematics, the Riesz potential is a potential named after its discoverer, the Hungarian mathematician Marcel Riesz. In a sense, the Riesz potential defines an inverse for a power of the Laplace operator on Euclidean space. They generalize to several variables the Riemann–Liouville integrals of one variable.
If 0 < α < ''n'', then the Riesz potential ''I''α''f'' of a locally integrable function ''f'' on R''n'' is the function defined by
\, \mathrmy|}}
where the constant is given by
:c_\alpha = \pi^2^\alpha\frac.
This singular integral is well-defined provided ''f'' decays sufficiently rapidly at infinity, specifically if ''f'' ∈ L''p''(R''n'') with 1 ≤ ''p'' < ''n''/α. If ''p'' > 1, then the rate of decay of ''f'' and that of ''I''α''f'' are related in the form of an inequality (the Hardy–Littlewood–Sobolev inequality)
:\|I_\alpha f\|_ \le C_p \|f\|_p,\quad p^
*=\frac.
More generally, the operators ''I''α are well-defined for complex α such that 0 < Re α < ''n''.
The Riesz potential can be defined more generally in a weak sense as the convolution
:I_\alpha f = f
*K_\alpha\,
where ''K''α is the locally integrable function:
:K_\alpha(x) = \frac\frac(\xi) = |2\pi\xi|^
and so, by the convolution theorem,
:\widehat(\xi) = |2\pi\xi|^ \hat(\xi).
The Riesz potentials satisfy the following semigroup property on, for instance, rapidly decreasing continuous functions
:I_\alpha I_\beta = I_\
provided
:0 < \operatorname \alpha, \operatorname \beta < n,\quad 0 < \operatorname (\alpha+\beta) < n.
Furthermore, if 2 < Re α <''n'', then
:\Delta I_ = -I_\alpha.\
One also has, for this class of functions,
:\lim_ (I^\alpha f)(x) = f(x).
==See also==

* Bessel potential
* Fractional integration
* Sobolev space
* Fractional Schrödinger equation

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Riesz potential」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.